Adjuvant and carrier protein-dependent T-cell priming promotes a robust antibody response against the Plasmodium falciparum Pfs25 vaccine candidate
نویسندگان
چکیده
Humoral immune responses have the potential to maintain protective antibody levels for years due to the immunoglobulin-secreting activity of long-lived plasma cells (LLPCs). However, many subunit vaccines under development fail to generate robust LLPC responses, and therefore a variety of strategies are being employed to overcome this limitation, including conjugation to carrier proteins and/or formulation with potent adjuvants. Pfs25, an antigen expressed on malaria zygotes and ookinetes, is a leading transmission blocking vaccine (TBV) candidate for Plasmodium falciparum. Currently, the conjugate vaccine Pfs25-EPA/Alhydrogel is in Phase 1 clinical trials in the USA and Africa. Thus far, it has proven to be safe and immunogenic, but it is expected that a more potent formulation will be required to establish antibody titers that persist for several malaria transmission seasons. We sought to determine the contribution of carrier determinants and adjuvants in promoting high-titer, long-lived antibody responses against Pfs25. We found that both adjuvants and carrier proteins influence the magnitude and capacity of Pfs25-specific humoral responses to remain above a protective level. Furthermore, a liposomal adjuvant with QS21 and a TLR4 agonist (GLA-LSQ) was especially effective at inducing T follicular helper (Tfh) and LLPC responses to Pfs25 when coupled to immunogenic carrier proteins.
منابع مشابه
Effect of CpG oligodeoxynucleotides on the immunogenicity of Pfs25, a Plasmodium falciparum transmission-blocking vaccine antigen.
Antibodies directed against Pfs25, a protein present on the surface of zygotes and ookinetes of Plasmodium falciparum, completely block pathogen transmission. We evaluated the immunomodulatory effect of CpG oligodeoxynucleotides (ODN) on the immunogenicity of recombinant Pfs25 (rPfs25) formulated in alum (Al). Immunization of mice with rPfs25 plus CpG ODN improved both the antibody titer (a 30-...
متن کاملRecombinant Pfs25 protein of Plasmodium falciparum elicits malaria transmission-blocking immunity in experimental animals
Pfs25 is a sexual stage antigen of Plasmodium falciparum that is expressed on the surface of zygote and ookinete forms of the parasite. Monoclonal antibodies directed against native Pfs25 can block completely the development of P. falciparum oocysts in the midgut of the mosquito vector. Thus, this 25-kD protein is a potential vaccine candidate for eliciting transmission-blocking immunity in inh...
متن کاملComparative Assessment of Transmission-Blocking Vaccine Candidates against Plasmodium falciparum
Malaria transmission-blocking vaccines (TBVs) target the development of Plasmodium parasites within the mosquito, with the aim of preventing malaria transmission from one infected individual to another. Different vaccine platforms, mainly protein-in-adjuvant formulations delivering the leading candidate antigens, have been developed independently and have reported varied transmission-blocking a...
متن کاملInduction of Plasmodium falciparum transmission-blocking antibodies in nonhuman primates by a combination of DNA and protein immunizations.
Malaria transmission-blocking vaccination can effectively reduce and/or eliminate transmission of parasites from the human host to the mosquito vector. The immunity achieved by inducing an antibody response to surface antigens of male and female gametes and parasite stages in the mosquito. Our laboratory has developed DNA vaccine constructs, based on Pfs25 (a Plasmodium falciparum surface prote...
متن کاملGenetic diversity and antibody responses against Plasmodium falciparum vaccine candidate genes from Chhattisgarh, Central India: Implication for vaccine development
The genetic diversity in Plasmodium falciparum antigens is a major hurdle in developing an effective malaria vaccine. Protective efficacy of the vaccine is dependent on the polymorphic alleles of the vaccine candidate antigens. Therefore, we investigated the genetic diversity of the potential vaccine candidate antigens i.e. msp-1, msp-2, glurp, csp and pfs25 from field isolates of P.falciparum ...
متن کامل